Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 408

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Thermal conductivity measurement of uranium-plutonium mixed oxide doped with Nd/Sm as simulated fission products

Horii, Yuta; Hirooka, Shun; Uno, Hiroki*; Ogasawara, Masahiro*; Tamura, Tetsuya*; Yamada, Tadahisa*; Furusawa, Naoya*; Murakami, Tatsutoshi; Kato, Masato

Journal of Nuclear Materials, 588, p.154799_1 - 154799_20, 2024/01

 Times Cited Count:1 Percentile:72.91(Materials Science, Multidisciplinary)

The thermal conductivities of near-stoichiometric (U,Pu,Am)O$$_{2}$$ doped with Nd$$_{2}$$O$$_{3}$$/Sm$$_{2}$$O$$_{3}$$, which is major fission product (FP) generated by a uranium-plutonium mixed oxides (MOX) fuel irradiation, as simulated fission products are evaluated at 1073-1673 K. The thermal conductivities are calculated from the thermal diffusivities that are measured using the laser flash method. To evaluate the thermal conductivity from a homogeneity viewpoint of Nd/Sm cations in MOX, the specimens with different homogeneity of Nd/Sm are prepared using two kinds of powder made by ball-mill and fusion methods. A homogeneous Nd/Sm distribution decreases the thermal conductivity of MOX with increasing Nd/Sm content, whereas heterogeneous Nd/Sm has no influence. The effect of Nd/Sm on the thermal conductivity is studied using the classical phonon transport model (A+BT)$$^{-1}$$. The dependences of the coefficients A and B on the Nd/Sm content (C$$_{Nd}$$ and C$$_{Sm}$$, respectively) are evaluated as: A(mK/W)=1.70 $$times$$ 10$$^{-2}$$ + 0.93C$$_{Nd}$$ + 1.20C$$_{Sm}$$, B(m/W)=2.39 $$times$$ 10$$^{-4}$$.

Journal Articles

A Raman spectroscopy study of bicarbonate effects on UO$$_{2+x}$$

McGrady, J.; Kumagai, Yuta; Watanabe, Masayuki; Kirishima, Akira*; Akiyama, Daisuke*; Kimuro, Shingo; Ishidera, Takamitsu

Journal of Nuclear Science and Technology, 60(12), p.1586 - 1594, 2023/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Treatment of U contaminated waste generated from nuclear fuel fabrication process, 1; Ce(IV) recovery by temperature swing extraction with monoamides

Iwamoto, Toshihiro; Saito, Madoka*; Takahatake, Yoko; Watanabe, So; Watanabe, Masayuki; Naruse, Atsuki*; Tsukahara, Takehiko*

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 4 Pages, 2023/05

Applicability of temperature swing extraction technology employing monoamides was examined for uranium contaminated waste treatment procedure. Separation experiments on simulated target solution with three kinds of monoamides with different structure showed that Ce(IV) in the solution was selectively recovered by the temperature swing extraction operation. Based on the experiments, an appropriate monoamide for the procedure was selected.

Journal Articles

Uranium hydroxide/oxide deposits on uranyl reduction

Ouchi, Kazuki; Matsumura, Daiju; Tsuji, Takuya; Kobayashi, Toru; Otobe, Haruyoshi; Kitatsuji, Yoshihiro

RSC Advances (Internet), 13(24), p.16321 - 16326, 2023/05

 Times Cited Count:0 Percentile:0(Chemistry, Multidisciplinary)

We clarified the chemical state transformation of deposits following the reduction of uranyl ion (U$$^{rm VI}$$O$$_{2}$$$$^{2+}$$) from the results of electrochemical quartz crystal microbalance, impedance spectra and X-ray absorption fine structure measurements. We propose the following deposition mechanism: (1) U$$^{rm IV}$$ is formed by the disproportionation of U$$^{rm V}$$. (2) U$$^{rm IV}$$ forms U$$^{rm IV}$$ hydroxide deposits, and (3) finally, the hydroxide deposits transform into U$$^{rm IV}$$ oxide, generally having a larger electrical resistance than the former.

Journal Articles

Ferromagnetic crossover within the ferromagnetic order of U$$_{7}$$Te$$_{12}$$

Opletal, P.; Sakai, Hironori; Haga, Yoshinori; Tokiwa, Yoshifumi; Yamamoto, Etsuji; Kambe, Shinsaku; Tokunaga, Yo

Journal of the Physical Society of Japan, 92(3), p.034704_1 - 034704_5, 2023/03

 Times Cited Count:1 Percentile:0(Physics, Multidisciplinary)

We investigate the physical properties of a single crystal of uranium telluride U$$_{7}$$Te$$_{12}$$. We have confirmed that U$$_{7}$$Te$$_{12}$$ crystallizes in the hexagonal structure with three nonequivalent crystallographic uranium sites. The paramagnetic moments are estimated to be approximately 1 $$mu_{B}$$ per the uranium site, assuming a uniform moment on all the sites. A ferromagnetic phase transition occurs at $$T_{rm C}$$= 48 K, where the in-plane magnetization increases sharply, whereas the out of-plane component does not increase significantly. With decreasing temperature further below $$T_{rm C}$$ under field-cooling conditions, the out-of-plane component increases rapidly around T$$^{star}$$= 26 K. In contrast, the in-plane component hardly changes at T$$^{star}$$. Specific heat measurement indicates no $$lambda$$-type anomaly around T$$^{star}$$, so this is a cross-over suggesting a reorientation of the ordering moments or successive magnetic ordering on the part of the multiple uranium sites.

JAEA Reports

Nuclear criticality benchmark analyses on TRIGA-type reactor systems by using continuous-energy Monte Carlo code MVP with JENDL-5

Yanagisawa, Hiroshi; Umeda, Miki; Motome, Yuiko; Murao, Hiroyuki

JAEA-Technology 2022-030, 80 Pages, 2023/02

JAEA-Technology-2022-030.pdf:2.57MB
JAEA-Technology-2022-030(errata).pdf:0.11MB

Nuclear criticality benchmark analyses were carried out for TRIGA-type reactor systems in which uranium-zirconium hydride fuel rods are loaded by using the continuous-energy Monte Carlo code MVP with the evaluated nuclear data library JENDL-5. The analyses cover two sorts of benchmark data, the IEU-COMP-THERM-003 and IEU-COMP-THERM-013 in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook, and effective neutron multiplication factors, reactivity worths for control rods etc. were calculated by JENDL-5 in comparison with those by the previous version of JENDL. As the results, it was confirmed that the effective neutron multiplication factors obtained by JENDL-5 were 0.4 to 0.6% greater than those by JENDL-4.0, and that there were no significant differences in the calculated reactivity worths by between JENDL-5 and JENDL-4.0. Those results are considered to be helpful for the confirmation of calculation accuracy in the analyses on NSRR control rod worths, which are planned in the future.

Journal Articles

Status of technical development for near surface disposal of radioactive waste generated from research facilities, etc.

Sakai, Akihiro

Dai-33-Kai Genshiryoku Shisetsu Dekomisshoningu Gijutsu Koza Tekisuto, p.31 - 63, 2023/02

The Japan Atomic Energy Agency (JAEA) is promoting the project for concrete-vault disposal and landfill-type disposal of radioactive waste generated from research facilities, etc. This report introduces current status of technical development for JAEA's disposal project as following items; (1) kinds of research facilities and characteristics of radioactivity inventory of the waste, (2) the structures of the disposal facilities which JAEA conceptually designed, (3) development of waste acceptance criteria for major radioactive waste for the JAEA disposal facilities, (4) the concept of the criteria for disposal of uranium bearing waste, that has been established in 2021.

Journal Articles

Oxygen potential, oxygen diffusion, and defect equilibria in UO$$_{2 pm x}$$

Watanabe, Masashi; Kato, Masato

Frontiers in Nuclear Engineering (Internet), 1, p.1082324_1 - 1082324_9, 2023/01

Since the oxygen potential and the oxygen coefficient of UO$$_{2}$$ have a significant impact on fuel performance, many experimental data have been obtained. However, experimental data of the oxygen potential and the oxygen diffusion coefficient in the high temperature region above 1673 K are very limited. In the present study, we aimed to obtain these data and analyze them by defect chemistry. The oxygen potentials and the oxygen chemical diffusion coefficient of UO$$_{2}$$ were measured by the gas equilibrium method in the near stoichiometric region at temperatures ranging from 1673 to 1873 K. A data set of oxygen potentials was made together with literature data and analyzed by defect chemistry. The oxygen potential of UO$$_{2}$$ was determined as a function of O/U ratio and temperature, and an equation representing the relationship was derived. The oxygen chemical diffusion coefficient values obtained in this study were reasonably close to the literature values. The oxygen partial pressure dependence of the oxygen chemical diffusion coefficients was predicted from the evaluated results of the oxygen potential data, but no clear dependence was observed.

Journal Articles

Numerical reproduction of the seasonal variation in dissolved uranium in Lake Biwa

Saito, Tatsuo; Yamazawa, Hiromi*; Mochizuki, Akihito

Journal of Environmental Radioactivity, 255, p.107035_1 - 107035_14, 2022/12

 Times Cited Count:0 Percentile:0(Environmental Sciences)

The seasonal variation of dissolved U (DU) in Lake Biwa was reproduced by the following model and parameter research. The introduced models are the water-DU mass balance, and the ion exchange between UO$$_{2}$$$$^{2+}$$ and H$$^{+}$$ on the lakeshore soil. The optimized parameters were the CEC of the lakeshore, TU as the sum of DU and AU (soil adsorbed U), kads and kdes as the first order reaction rate coefficients during rapid soil adsorption and desorption of U, respectively. Tabulated by the chemical equilibria constituting DU and analyzed the contribution of each chemical species, it is shown that the seasonal variation of DU is caused by the seasonal variation of pH. A correction to the ion-exchange equilibrium to shift to first order rate reaction only when the daily AU ratio increased above kads or decreased below kdes, improved the reproducibility of DU measurements and reproduced the delay of the DU peak from the pH peak.

JAEA Reports

Development of tailor-made adsorbents for uranium recovery from seawater on the basis of uranyl coordination chemistry (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2022-028, 54 Pages, 2022/11

JAEA-Review-2022-028.pdf:2.97MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of Tailor-made Adsorbents for Uranium Recovery from Seawater on the Basis of Uranyl Coordination Chemistry" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The present study aims to develop a new ligand class for efficient and selective capture of uranium from seawater. On the basis of deep understanding on uranyl coordination chemistry, we design molecular structures of pentadentate ligands as functional moieties for uranium adsorption from seawater and study fundamental coordination chemistry of uranyl ion with those ligands in order to resolve current problems in uranium recovery technology …

Journal Articles

Study on identification of materials in fuel debris and waste by neutron induced gamma ray spectroscopy

Nauchi, Yasushi*; Nomi, Takayoshi; Suzuki, Risa; Kosuge, Yoshihiro*; Shiba, Tomooki; Takada, Akira*; Kaburagi, Masaaki; Okumura, Keisuke

Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR2022) (Internet), 4 Pages, 2022/10

Journal Articles

Aerosol characterization during heating and mechanical cutting of simulated uranium containing debris; The URASOL project in the framework of Fukushima Daiichi fuel debris removal

Porcheron, E.*; Leblois, Y.*; Journeau, C.*; Delacroix, J.*; Molina, D.*; Suteau, C.*; Berlemont, R.*; Bouland, A.*; Lallot, Y.*; Roulet, D.*; et al.

Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR2022) (Internet), 5 Pages, 2022/10

One of the important challenges for the decommissioning of the damaged reactors of the Fukushima Daiichi Nuclear Power Station (1F) is the fuel debris retrieval. The URASOL project, which is undertaken by a French consortium consisting of ONET Technologies, CEA, and IRSN for JAEA/CLADS, is dedicated to acquiring basic scientific data on the generation and characteristics of radioactive aerosols from the thermal or mechanical processing of fuel debris simulant. Heating process undertaken in the VITAE facility simulates some representative conditions of thermal cutting by LASER. For mechanical cutting, the core boring technique is implemented in the FUJISAN facility. Fuel debris simulants have been developed for inactive and active trials. The aerosols are characterized in terms of mass concentration, real time number concentration, mass size distribution, morphology, and chemical properties. The chemical characterization aims at identifying potential radioactive particles released and the associated size distribution, both of which are important information for assessing possible safety and radioprotection measures during the fuel debris retrieval operations at 1F.

Journal Articles

First observation of the de Haas-van Alphen effect and Fermi surfaces in the unconventional superconductor UTe$$_2$$

Aoki, Dai*; Sakai, Hironori; Opletal, P.; Tokiwa, Yoshifumi; Ishizuka, Jun*; Yanase, Yoichi*; Harima, Hisatomo*; Nakamura, Ai*; Li, D.*; Homma, Yoshiya*; et al.

Journal of the Physical Society of Japan, 91(8), p.083704_1 - 083704_5, 2022/08

 Times Cited Count:22 Percentile:96.09(Physics, Multidisciplinary)

Journal Articles

Effect of uranium deficiency on normal and superconducting properties in unconventional superconductor UTe$$_2$$

Haga, Yoshinori; Opletal, P.; Tokiwa, Yoshifumi; Yamamoto, Etsuji; Tokunaga, Yo; Kambe, Shinsaku; Sakai, Hironori

Journal of Physics; Condensed Matter, 34(17), p.175601_1 - 175601_7, 2022/04

 Times Cited Count:17 Percentile:89.44(Physics, Condensed Matter)

Journal Articles

Electronic structure of ThPd$$_2$$Al$$_3$$; Impact of the U $$5f$$ states on the electronic structure of UPd$$_2$$Al$$_3$$

Fujimori, Shinichi; Takeda, Yukiharu; Yamagami, Hiroshi; Posp$'i$$v{s}$il, J.*; Yamamoto, Etsuji; Haga, Yoshinori

Physical Review B, 105(11), p.115128_1 - 115128_6, 2022/03

 Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)

JAEA Reports

Development of tailor-made adsorbents for uranium recovery from seawater on the basis of uranyl coordination chemistry (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2021-041, 42 Pages, 2022/01

JAEA-Review-2021-041.pdf:2.03MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of tailor-made adsorbents for uranium recovery from seawater on the basis of uranyl coordination chemistry" conducted in FY2020. On the basis of deep understanding on uranyl coordination chemistry, we design molecular structures of pentadentate ligands as functional moieties for uranium adsorption from seawater and study coordination chemistry of uranyl ion with those ligands in order to resolve current problems in uranium recovery technology from seawater and to develop novel selective and efficient adsorbents for this purpose.

Journal Articles

Design of microchannel suitable for packing with anion exchange resins; Uranium separation from seawater containing a large amount of cesium

Ouchi, Kazuki; Tsukahara, Takehiko*; Brandt, A.*; Muto, Yuki*; Nabatame, Nozomi*; Kitatsuji, Yoshihiro

Analytical Sciences, 37(12), p.1789 - 1794, 2021/12

 Times Cited Count:1 Percentile:6.71(Chemistry, Analytical)

We attempted to scale down a separation process of uranium (U) using the microchip column loaded with anion exchange resin to develop safety and waste-reducing separation technique. The ideal separation performance of U was obtained by the properly design of a microchannel. The concentration of U in seawater as a real-world sample could be quantified with the prepared microchip column. It indicates that the microchip column is sufficiently practical. Compared to separation of U with a general column, the column size was successfully scaled down to $$<$$ 1/5000.

Journal Articles

Fe, Mn and $$^{238}$$U accumulations in ${it Phragmites australis}$ naturally growing at the mill tailings pond; Iron plaque formation possibly related to root-endophytic bacteria producing siderophores

Nakamoto, Yukihiro*; Doyama, Kohei*; Haruma, Toshikatsu*; Lu, X.*; Tanaka, Kazuya; Kozai, Naofumi; Fukuyama, Kenjin; Fukushima, Shigeru; Ohara, Yoshiyuki; Yamaji, Keiko*

Minerals (Internet), 11(12), p.1337_1 - 1337_17, 2021/12

 Times Cited Count:1 Percentile:10.87(Geochemistry & Geophysics)

Mine drainage is a vital water problem in the mining industry worldwide because of the heavy metal elements and low pH. Rhizofiltration using wetland plants is an appropriate method to remove heavy metals from the water via accumulation in the rhizosphere. ${it Phragmites australis}$ is one of the candidate plants for this method because of metal accumulation, forming iron plaque around the roots. At the study site, which was the mill tailings pond in the Ningyo-toge uranium mine, ${it P. australis}$ has been naturally growing since 1998. The results showed that ${it P. australis}$ accumulated Fe, Mn, and $$^{238}$$U in the nodal roots without/with iron plaque compared with other plant tissues. Among the 837 bacterial colonies isolated from nodal roots, 88.6% showed siderophore production activities. Considering iron plaque formation around ${it P. australis}$ roots, we hypothesized that microbial siderophores might influence iron plaque formation because bacterial siderophores have catechol-like functional groups. The complex of catechol or other phenolics with Fe was precipitated due to the networks between Fe and phenolic derivatives. The experiment using bacterial products of root endophytes, such as ${it Pseudomonas}$ spp. and ${it Rhizobium}$ spp., showed precipitation with Fe ions, and we confirmed that several ${it Ps.}$ spp. and ${it R.}$ spp. produced unidentified phenolic compounds. In conclusion, root-endophytic bacteria such as ${it Pseudomonas}$ spp. and ${it R.}$ spp., isolated from metal-accumulating roots of ${it P. australis}$, might influence iron plaque formation as the metal accumulation site. Iron plaque formation is related to tolerance in ${it P. australis}$, and ${it Ps.}$ spp. and ${it R.}$ spp. might indirectly contribute to tolerance.

JAEA Reports

Evaluation of the minimum critical amount for heterogeneous lattice systems composed of fuel rods utilized in low-power water-moderated research and test reactors by using continuous-energy Monte Carlo code MVP with JENDL-4.0

Yanagisawa, Hiroshi

JAEA-Technology 2021-023, 190 Pages, 2021/11

JAEA-Technology-2021-023.pdf:5.25MB

Computational analyses on nuclear criticality characteristics were carried out for heterogeneous lattice systems composed of water moderator and fuel rods utilized in low-power research and test reactors, in which the depletion of fuel due to burnup is relatively small, by using the continuous-energy Monte Carlo code MVP Version 2 with the evaluated nuclear data library JENDL-4.0. In the analyses, the minimum critical number of fuel rods was evaluated using calculated neutron multiplication factors for the heterogeneous systems of the uranium dioxide fuel rod in the Static Experiments Critical Facility (STACY) and the Tank-type Critical Assembly (TCA), and the uranium-zirconium hydride fuel rod in the Nuclear Safety Research Reactor (NSRR). In addition, six sorts of the ratio of reaction rates, which are components of neutron multiplication factors, were calculated in the analyses to explain the variation of neutron multiplication factors with the ratio of water moderator to fuel volume in a unit fuel rod cell. Those results of analyses are considered to be useful for the confirmation of reasonableness and validity of criticality safety measures as data showing criticality characteristics for water-moderated heterogeneous lattice systems composed of the existing fuel rods in research and test reactors, of which criticality data are not sufficiently provided by the Criticality Safety Handbook.

Journal Articles

Numerical reproduction of dissolved U concentrations in a PO$$_{4}$$-treated column study of Hanford 300 area sediment using a simple ion exchange and immobile domain model

Saito, Tatsuo; Sato, Kazuhiko; Yamazawa, Hiromi*

Journal of Environmental Radioactivity, 237, p.106708_1 - 106708_9, 2021/10

 Times Cited Count:2 Percentile:13.39(Environmental Sciences)

We succeeded at numerical reproduction of dissolved U concentrations from column experiments with PO$$_{4}$$-treated Hanford 300 Area sediment. The time-series curves of dissolved U concentrations under various Darcy flow rate conditions were reproduced by the numerical model in the present study through optimization of the following parameters:(i) the mass of U in mobile domain (on surface soil connected to the stream) and the rest of the total U left as precipitation in immobile domain (isolated in deep soil);(ii) the mixing ratio between immobile and mobile domains, to fit the final recovering curve of concentration; and (iii) the cation exchange capacity (CEC$$_{Zp}$$) and equilibrium constant (k$$_{Zp}$$) of the exchange reaction of UO$$_{2}$$$$^{2+}$$ and H$$^{+}$$ on simulated soil surface ($$Zp$$), to fit the transient equilibrium concentration, forming the bed of the bathtub curve.

408 (Records 1-20 displayed on this page)